电磁场环境下7075-T6铝合金腐蚀数值模拟

郭巧荣, 颜传志, 卿光辉, 何卫平

装备环境工程 ›› 2026, Vol. 23 ›› Issue (1) : 63-73.

PDF(7629 KB)
PDF(7629 KB)
装备环境工程 ›› 2026, Vol. 23 ›› Issue (1) : 63-73. DOI: 10.7643/ issn.1672-9242.2026.01.008
航空航天装备

电磁场环境下7075-T6铝合金腐蚀数值模拟

  • 郭巧荣1, 颜传志1, 卿光辉1*, 何卫平2
作者信息 +

Numerical Simulation of Corrosion of 7075-T6 Aluminum Alloy under Electromagnetic Field Environment

  • GUO Qiaorong1, YAN Chuanzhi1, QING Guanghui1*, HE Weiping2
Author information +
文章历史 +

摘要

目的 研究电磁场环境下7075-T6铝合金腐蚀行为。方法 建立7075-T6铝合金在3.5% NaCl溶液中有无电磁场环境下局部腐蚀模型,以及铝合金与低碳钢在大阳极小阴极的有无磁场下的电偶腐蚀模型,通过电解质电流密度分布云图、腐蚀厚度变化、腐蚀产物追踪分析磁场对腐蚀进程的影响。结果 磁场环境下,铝合金腐蚀速率大于无磁场环境下铝合金腐蚀速率。在相同磁场方向,不同磁场大小情况时,13 Gs垂直磁场环境下铝合金腐蚀速率大于40 Gs垂直磁场。在相同磁场大小,不同磁场方向时,13 Gs垂直磁场环境下铝合金的腐蚀速率大于13 Gs水平磁场。分析了在有无磁场下小阴极大阳极沉积模型的腐蚀形貌,从电解质电位、电流密度、腐蚀深度等对比,发现磁场主要改变腐蚀反应的基本属性。结论 在恒定的磁场中阳极电流密度增大,传质过程加剧,加速了腐蚀反应进程。

Abstract

The work aims to investigate the corrosion behavior of 7075-T6 aluminum alloy in an electromagnetic field environment. Localized corrosion models were established for 7075-T6 aluminum alloy in 3.5% NaCl solution with and without an electromagnetic field. Additionally, a galvanic corrosion model was developed for the alloy paired with low-carbon steel in a large anode-small cathode configuration under both magnetic and non-magnetic conditions. The influence of the magnetic field on the corrosion process was analyzed through electrolyte current density distribution maps, corrosion thickness variations, and corrosion product tracking. Results revealed that the corrosion rate of the aluminum alloy was higher in the magnetic field environment than in the magnetic field-free environment. Specifically, under the same magnetic field direction but different magnetic field magnitudes, the corrosion rate under a 13 Gs vertical magnetic field exceeded that under a 40 Gs vertical magnetic field. Similarly, under the same magnetic field magnitude but different magnetic field directions, the corrosion rate under a 13 Gs vertical magnetic field was higher than that under a 13 Gs horizontal magnetic field. Corrosion morphology under small cathode/large anode deposition models with and without magnetic fields was analyzed. Comparisons of electrolyte potential, current density, and corrosion depth revealed that magnetic fields primarily altered fundamental properties of the corrosion reaction. Within a constant magnetic field, anodic current density increases, intensifying mass transfer processes and accelerating the corrosion reaction.

关键词

铝合金 / 电磁场 / 局部腐蚀 / 腐蚀形貌 / 腐蚀机理 / COMSOL仿真

Key words

aluminum alloy / electromagnetic field / localized corrosion / corrosion morphology / corrosion mechanism / COMSOL simulation

引用本文

导出引用
郭巧荣, 颜传志, 卿光辉, 何卫平. 电磁场环境下7075-T6铝合金腐蚀数值模拟[J]. 装备环境工程. 2026, 23(1): 63-73 https://doi.org/10.7643/ issn.1672-9242.2026.01.008
GUO Qiaorong, YAN Chuanzhi, QING Guanghui, HE Weiping. Numerical Simulation of Corrosion of 7075-T6 Aluminum Alloy under Electromagnetic Field Environment[J]. Equipment Environmental Engineering. 2026, 23(1): 63-73 https://doi.org/10.7643/ issn.1672-9242.2026.01.008
中图分类号: TG172.2    TJ04   

参考文献

[1] 熊柏青, 闫宏伟, 张永安, 等.我国航空铝合金产业发展战略研究[J].中国工程科学, 2023, 25(1): 88-95.
XIONG B Q, YAN H W, ZHANG Y A, et al.Development Strategy for the Aviation-Grade Aluminum Alloy Industry in China[J].Strategic Study of CAE, 2023, 25(1): 88-95.
[2] IMRAN M, ANWAR KHAN A R.Characterization of Al-7075 Metal Matrix Composites: A Review[J].Journal of Materials Research and Technology, 2019, 8(3): 3347-3356.
[3] 胡建军, 潘增寿.机载电子设备高强度辐射场防护研究[J].通讯世界, 2019, 26(8): 38-39.
U J J, PAN Z S.Study on Protection of Airborne Electronic Equipment from High-Intensity Radiation Field[J].Telecom World, 2019, 26(8): 38-39.
[4] 张有宏, 常新龙, 张世英, 等.铝合金结构腐蚀损伤性能评价指标[J].试验技术与试验机, 2007, 47(4): 5-7.
ZHANG Y H, CHANG X L, ZHANG S Y, et al.Assessment Metric Study on Corrosion Damage Character of Aluminum Alloy Structure[J].Test Technology and Testing Machine, 2007, 47(4): 5-7.
[5] RAMKUMAR K R, SIVASANKARAN S, AL-MUFADI F A, et al.Investigations on Microstructure, Mechanical, and Tribological Behaviour of AA 7075-x WT.% TiC Composites for Aerospace Applications[J].Archives of Civil and Mechanical Engineering, 2019, 19(2): 428-438.
[6] 赵麦群, 雷阿丽.金属的腐蚀与防护[M].北京: 国防工业出版社, 2002.
ZHAO M Q, LEI A/E/E L.Corrosion and Protection of Metals[M].Beijing: National Defense Industry Press, 2002.
[7] 刘秀晨, 安成强.金属腐蚀学[M].北京: 国防工业出版社, 2002.
LIU X C, AN C Q.Metal Corrosion[M].Beijing: National Defense Industry Press, 2002.
[8] 宋宇航, 杨翔宁, 张泰峰, 等.7B04铝合金-CFRP300在模拟海洋大气环境下的电偶腐蚀行为[J].材料工程, 2022, 50(11): 155-164.
SONG Y H, YANG X N, ZHANG T F, et al.Galvanic Corrosion Behavior of 7B04 Aluminum Alloy-CFRP300 under Simulated Marine Environment[J].Journal of Materials Engineering, 2022, 50(11): 155-164.
[9] 黄连鹏, 张欣, 熊伊铭, 等.不同磁场强度下铝镁合金腐蚀行为研究[J].中国腐蚀与防护学报, 2022, 42(5): 833-838.
HUANG L P, ZHANG X, XIONG Y M, et al.Corrosion Behavior of Al-3.0Mg-x RE/Fe Alloys under Magnetic Field of Different Intensities[J].Journal of Chinese Society for Corrosion and Protection, 2022, 42(5): 833-838.
[10] 熊伊铭, 梅婉, 王泽华, 等.磁场作用下5083铝合金腐蚀行为研究[J].中国腐蚀与防护学报, 2024, 44(1): 229-236.
XIONG Y M, MEI W, WANG Z H, et al.Corrosion Behavior of 5083 Al-Alloy under Magnetic Field[J].Journal of Chinese Society for Corrosion and Protection, 2024, 44(1): 229-236.
[11] 姜超, 马保吉.磁场对AZ31B镁合金在2种浓度NaCl溶液中腐蚀特性的影响[J].材料保护, 2021, 54(1): 7-12.
JIANG C, MA B J.Effect of Magnetic Field on the Corrosion Characteristics of AZ31B Magnesium Alloy in NaCl Solutions with Two Different Concentrations[J].Materials Protection, 2021, 54(1): 7-12.
[12] 郁大照, 张彤, 刘琦.基于水平集方法研究H62铜合金腐蚀沉积分布[J].兵器装备工程学报, 2021, 42(7): 263-268.
YU D Z, ZHANG T, LIU Q.Corrosion Deposit Distribution of H62 Copper Alloy Based on Level Set Method[J].Journal of Ordnance Equipment Engineering, 2021, 42(7): 263-268.
[13] 郁大照, 王泗环, 王腾, 等.铜在弱酸性缝隙溶液下的局部腐蚀仿真[J].兵器装备工程学报, 2020, 41(5): 175-178.
YU D Z, WANG S H, WANG T, et al.Local Corrosion Simulation of Copper in Weak Acid Crevice Solution[J].Journal of Ordnance Equipment Engineering, 2020, 41(5): 175-178.
[14] 张彤, 郁大照.航空电连接器力学性能和电学性能仿真[J].海军航空工程学院学报, 2020, 35(2): 181-188.
ZHANG T, YU D Z.Simulation of Mechanical and Electrical Properties of Avionics Connectors[J].Journal of Naval Aeronautical and Astronautical University, 2020, 35(2): 181-188.
[15] 刘琦, 郁大照, 王琳, 等.航空电连接器海洋环境加速试验与腐蚀仿真研究[J].装备环境工程, 2021, 18(11): 18-27.
LIU Q, YU D Z, WANG L, et al.Acceleration Test and Corrosion Simulation of Aviation Electrical Connectors in Marine Environment[J].Equipment Environmental Engineering, 2021, 18(11): 18-27.
[16] 刘思文, 代玉杰, 张娇娇.基于COMSOL Multiphysics的点蚀电化学模拟[J].当代化工, 2023, 52(10): 2412-2419.
LIU S W, DAI Y J, ZHANG J J.Electrochemical Simulation of Pitting Corrosion Based on COMSOL Multiphysics[J].Contemporary Chemical Industry, 2023, 52(10): 2412-2419.
[17] 张泰峰, 张勇, 黄海亮, 等.某型飞机结构件局部腐蚀仿真与试验验证[J].腐蚀与防护, 2019, 40(7): 523-529.
ZHANG T F, ZHANG Y, HUANG H L, et al.Simulation and Experimental Verification of Localized Corrosion of an Aircraft Structure[J].Corrosion & Protection, 2019, 40(7): 523-529.
[18] DICKINSON E J F, EKSTRÖM H, FONTES E.COMSOL Multiphysics®: Finite Element Software for Electrochemical Analysis.a Mini-Review[J].Electrochemistry Communications, 2014, 40: 71-74.
[19] 杨杰, 马丽萍, 崔晓婧, 等.化学链反应数值模拟的国内外研究现状[J].计算机与应用化学, 2017, 34(5): 401-408.
YANG J, MA L P, CUI X J, et al.Research Development of Numerical Simulation on Chemical Looping Reaction: Domestic and International Research Status[J].Journal of Computers and Applied Chemistry, 2017, 34(5): 401-408.
[20] DESHPANDE K B.Numerical Modeling of Micro-Galvanic Corrosion[J].Electrochimica Acta, 2011, 56(4): 1737-1745.
[21] SUN W, LIU G C, WANG L D, et al.An Arbitrary Lagrangian-Eulerian Model for Studying the Influences of Corrosion Product Deposition on Bimetallic Corrosion[J].Journal of Solid State Electrochemistry, 2013, 17(3): 829-840.
[22] 樊玉光, 罗文斌.0Cr18Ni10Ti 缝隙腐蚀行为的数值模拟研究[J].化工技术与开发, 2017, 46(11): 51-54.
FAN Y G, LUO W B.Numerical Simulation of Crevice Corrosion Behavior of 0Cr18Ni10Ti[J].Technology & Development of Chemical Industry, 2017, 46(11): 51-54.
[23] 文博.循环水中不锈钢缝隙腐蚀数值模拟研究[J].广州化工, 2016, 44(3): 95-97.
WEN B.Crevice Corrosion Numerical Simulation Study of Stainless Steel in the Circulating Water[J].Guangzhou Chemical Industry, 2016, 44(3): 95-97.
[24] 张慧, 梧松.电化学腐蚀法制备微圆柱电极数值模拟[J].机械设计与研究, 2012, 28(6): 103-106.
ZHANG H, WU S.Numerical Simulation of Fabricating Microelectrodes Based on Electrochemical Etching[J].Machine Design & Research, 2012, 28(6): 103-106.
[25] HUBER T, WANG Y.Effect of Propeller Coating on Cathodic Protection Current Demand: Sea Trial and Modeling Studies[J].Corrosion, 2012, 68(5): 441-448.
[26] 王晟楠.7075铝合金表面sol-gel/MAO复合涂层的耐腐蚀性能研究及数值模拟[D].北京: 北京石油化工学院, 2020.
WANG S N.Study and Numerical Simulation of Corrosion Resistance of Sol-Gel/MAO Coating on 7075 Aluminum[D].Beijing: Beijing Institute of Petrochemical Technology, 2020.

基金

航空科学基金(20230038067002)

PDF(7629 KB)

Accesses

Citation

Detail

段落导航
相关文章

/